Palza Cordero, Humberto

Palza Cordero, Humberto

  • Grado máximo: Doctor en Ciencias de la Ingeniería, Mención Ciencias de los Materiales, Universidad de Chile
  • Jerarquía: Profesor Asociado
  • Área de investigación: Ingeniería de Polímeros, nanomateriales y biomateriales.
  • Email: hpalza@ing.uchile.cl

Publicaciones


  1. P. Zapata; A. Zenteno; H. Palza; S. Guerrero; M.T. Ulloa (2015) “Effect of hydrothermally synthesized titanium nanotubes on the behavior of polypropylene for antimicrobial applications”. Polymer International. (in press), ISSN: 1097-0126. FI: 2,247.

  2. Garzon C., Palza, H. (2014) “Electrical behavior of polypropylene composites melt mixed with carbon-based particles: effect of the kind of particle and annealing process” Composites Science and Technology, 99, 117–123. ISSN:0266-3538. IF: 3.633.

  3. Wilhelm, M., Arwal, D., Palza, H., Schlatter, G. (2014) “New way to characterize the percolation threshold of polyethylene and carbon nanotube polymer composites using Fourier Transform (FT)-Rheology” Korea-Australia Rheology Journal 26, 319-326. ISSN: 1226-119X. IF: 0.632.

  4. Palza, H., Delgado, K., Moraga, N., Wang-Molina, S.H. (2014) “Polypropylene in the melt state as a medium for in-situ synthesis of copper nanoparticles” AIChE Journal 10,3406-3411. ISSN:0001-1541. IF: 2.581.

  5. Palza, H., Delgado, K., Pinochet, I. (2015) “Improving the metal ion release from nanoparticles embedded in a polypropylene matrix for antimicrobial applications” Journal of Applied Polymer Science, 132(1). ISSN: 0021-8995. IF: 1.640.

  6. Palza, H., (2015) “Antimicrobial Polymers with Metal Nanoparticles” International Journal of Molecular Sciences, 16(1), 2099-2116. ISSN:1422-0067. IF: 2.339.

  7. Bejarano J., Caviedes, P., Palza, H. (2015). “Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics” Biomedical Materials, Accepted.IF: 2.922.

  8. Gómez, M., Bracho, D., Palza, H., Quijada, R. (2015). “Effect of the Morphology on the Permeability, Mechanical and Thermal Properties of Polypropylene/SiO2 Nanocomposites” Polymer International. Accepted. IF: 2.247.

  9. Palza, H., Quijada, R., Delgado, K. (2015). “Antimicrobial polymer composites with copper micro- and nano-particles: effect of particle size and polymer matrix” Journal of Bioactive and Compatible Polymers. Accepted. IF: 2.500.

  10. Polypropylene in the melt state as a medium for in-situ synthesis of copper nanoparticles. H. Palza, K. Delgado, N. Moraga, S.H. Wang-Molina.AIChE Journal, 10:3406-3411, 2014.

  11. Improving the metal ion release from nanoparticles embedded in a polypropylene matrix for antimicrobial applications. H. Palza, K. Delgado, I. Pinochet. Journal of Applied Polymer Science, Accepted, 2014.

  12. New way to characterize the percolation threshold of polyethylene and carbon nanotube polymer composites using Fourier Transform (FT)-Rheology. M. Wilhelm, D. Arwal, H. Palza; G. Schlatter. Korea-Australia Rheology Journal,26, 319-326, 2014.

  13. Electrical behavior of polypropylene composites melt mixed with carbon-based particles: effect of the kind of particle and annealing process. C. Garzon, H. Palza. Composites Science and Technology. 99, 117–123, 2014.

  14. Effect of polymer structure and nanoparticles incorporation on the behavior of syndiotactic polypropylenes. J. Bejarano, R. Benavente, E. Pérez, M. Wilhelm, R. Quijada, H. Palza. Macromolecular Chemistry and Physics. 214, 2567−2578, 2013.

  15. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol-gel method. H. Palza, B. Escobar, J. Bejarano, D. Bravo, M. Diaz-Dosque, J. Perez. Materials Science and Engineering C. 33: 3795–3801, 2013.

  16. Polyethylene and poly(ethylene-co-1-octadecene) composites with TiO2 based nanoparticles by metallocenic “in-situ” polymerization. P. Zapata, H. Palza, L.S Cruz, I. Lieberwirth, F. Catalina, T. Corrales, F. Rabagliati. Polymer. 54:2690-2698, 2013.

  17. Effect of Short-Chain Branching on the Melt Behavior of Polypropylene Under Small-Amplitude Oscillatory Shear Conditions. H. Palza, R. Quijada, M. Wilhelm. Macromolecular Chemistry and Physics. 214:107-116, 2013.

  18. Nanostructured Manganese Oxide Particles from Coordination Complex Decomposition and their Catalytic Properties for Ethanol Oxidation. H. Palza, A. Maturana, F. Gracia, A. Neira, V. M. Fuenzalida, J. Avila, N. M. Sanchez-Ballester, M. R. J. Elsegood, S. J. Teat, K. Ariga, J. P. Hill. Journal of Nanoscience and Nanotechnology. 12:8087-8093, 2012.

  19. Functionalization of Silica Nanoparticles for Polypropylene Nanocomposite Applications. D. Bracho, V. N. Dougnac, H. Palza, R. Quijada. Journal of Nanomaterials. 2012: Article ID 263915, 8 pages, 2012.

  20. Novel antimicrobial polyethylene composites prepared by metallocenic “in-situ” polymerization with TiO2 based nanoparticles. P. Zapata, H. Palza, K. Delgado, F. Rabagliati. Journal of Polymer Science Part A: Polymer Chemistry. 50:4055-4062, 2012.

  21. Modifying the electrical behaviour of polypropylene/carbon nanotube composites by adding a second nanoparticle and by annealing processes. H. Palza, C. Garzón, O. Arias. eXPRESS Polymer Letters. 6:639–646, 2012.

  22. Electrical, Thermal and Mechanical Characterization of Polypropylene/Carbon Nanotube/Clay Hybrid Composite Materials. H. Palza, B. Reznick, M. Wilhelm, O. Arias, A. Vargas. Macromolecular Materials and Engineering. 297:474-480, 2012.

  23. Effect of Polymer Microstructure on the Behaviour of Syndiotactic Polypropylene / Organophilic Layered Silicate Composites. A. Zurita, H. Palza. Journal of Applied Polymer Science. 124:2601–2609, 2012.

  24. Synthetic layered and tube-like silica nanoparticles as novel supports for metallocene catalysts in ethylene polymerization. P. Zapata, R. Quijada, I. Lieberwirth, H. Palza. Applied Catalysis A: General. 407:181-187, 2011

  25. Morphological changes of carbon nanotubes in polyethylene matrices under oscillatory tests as determined by dielectrical measurements. H. Palza, M. Kappes, F. Hennrich, M. Wilhelm. Composites Science and Technology. 71:1361-1366, 2011.

  26. Polypropylene with Embedded Copper Metal or Copper Oxide Nanoparticles as a Novel Plastic Antimicrobial Agent. K. Delgado, R. Quijada, R. Palma, H. Palza. Letters in Applied Microbiology.53;50-54, 2011.

  27. Spherulite Growth Rate in Polypropylene/Silica Nanoparticle Composites: effect of particle Morphology and Compatibilizer. H. Palza, J. Vera, M. Wilhelm, P. Zapata. Macromolecular Materials and Engineering. 296:744-751, 2011.

  28. Composites of Polypropylene Melt Blended with Synthesized Silica Nanoparticles. H. Palza, R. Vergara, P. Zapata. Composites Science and Technology. 71:535-540, 2011.

  29. Catalytic Degradation of Polyethylene Using Nanosized ZSM-2 Zeolite. C. Covarrubias, F. Gracia, H. Palza. Applied Catalyst A: General 384:186-191, 2010.

  30. Improving the Thermal Behaviour of Polypropylene by Addition of Spherical Silica Nanoparticles. H. Palza, R. Vergara, P. Zapata. Macromolecular Materials and Engineering 295:899-905, 2010.

  31. Characterization of Melt Flow Instabilities in Polyethylene/Carbon Nanotube Composites. H. Palza, B. Reznik, M. Kappes, F. Hennrich, I.F.C. Naue, M. Wilhelm. Polymer 51:3753-3761, 2010.

  32. A New Tool for On-line Detection of Polymer Melt Flow Instabilities in a Capillary Rheometer. H. Palza, I.F.C. Naue, S. Filipe, A. Becker, J. Sunder, A. Göttfert, M. Wilhelm. Kautschuk Gummi Kunststoffe (KGK) 63:456-461, 2010.

  33. Effect of Comonomer Content on the Behaviour of Propylene Copolymer/Compatibilizer/Clay Nanocomposites. H. Palza. Macromolecular Materials and Engineering 295:492-501, 2010.

  34. Toward Tailor-made Biocide Materials Based on Polypropylene/Copper Nanoparticles. H. Palza, S. Gutiérrez, K. Delgado, O. Salazar, V. Fuenzalida, J. Avila, G. Figueroa, R. Quijada. Macromolecular Rapid Communications 31: 563-567, 2010.

  35. Correlation between Polyethylene Topology and Melt Flow Instabilities by Determining In-Situ Pressure Fluctuations and Applying Advanced Data Analysis. H. Palza, S. Filipe, I.N.C. Naue, M. Wilhelm. Polymer 51:522-534, 2010.

  36. Effect of the Hierarchical Structure in Polypropylene/Clay Composites on their Thermal Stability: From Single- to Multi-step Degradation Processes. H. Palza, M. Yazdani-Pedram. Macromolecular Materials and Engineering 295:48-57, 2010.


Libros


  1. Polymer/Copper-Based Materials for Antimicrobial Applications (DOI:10.1039/9781782624998-00351). Chapter 13; Pages: 351-366. Authors: H. Palza and K. Delgado. From book: Polymeric Materials with Antimicrobial Activity (DOI:10.1039/9781782624998). Eds. A. Muñoz-Bonilla, M. Cerrada, and M. Fernández-García. Royal Society of Chemistry, Thomas Graham House, UK, 2014.

  2. Desarrollo de nuevos materiales, casos de investigación con impacto comercial en nanotecnología y nuevos usos del cobre. Chapter 3; pages: 53-82. Authors: H. Palza and R. Quijada. From book: Innovación basada en conocimiento científico. Eds. B. Santelices, F. Lund, T. Cooper, J.A. Asenjo. Academia Chilena de Ciencias, Chile, 2014


Proyectos


  1. 2012 – 2013 Proyecto InnovaCorfo Perfil de I+D 12IDL1-15134: “Desarrollo de micro-esferas de alginato mediante microfluídica para tratamiento de tumores por embolización”. Director.

  2. 2013 – 2014 Proyecto FONDE-Idea CA12I10047: “Desarrollo de una malla de cultivo antifouling para la industria acuícola basada en polímeros con partículas de cobre”. Director e Investigador Responsable.

  3. 2011 – 2013 Proyecto InnovaCorfo Línea 2 I+D APLICADA 12IDL2-13411. “Desarrollo de nuevos materiales antimicrobianos basados en polímero con cobre para disminuir las infecciones intrahospitalarias”. Director e Investigador Principal.

  4. 2012 – 2013 Proyecto Fundación Copec-UC 9C006. “Producción de Energía a partir de Desechos Plásticos Utilizando Catalizadores Naturales”. 2012-2013. Director.

  5. 2011 – 2014 Fondecyt Regular Proyecto Nº 1110078. “Development of polymer/copper nanoparticle composites with novel technological applications”. Investigador Principal.